Heat and Mass Transfer

Code	Credit Hours
ME- 237	3-1

Course Description:

This course aims to develop the basic understanding and application of heat and mass transfer principles related to the engineering field. All three modes of heat transfer are covered in detail with main emphasis on types and variants related to conduction and convection. The course is meant to prepare students to use the subject matters in analyzing and solving the real life heat transfer problems. In this course the students also performs many lab experiments to verify the basic laws of heat transfer.

Text Book:

1. Heat and Mass Transfer: Fundamentals and Applications Latest Available Edition by Yunus Cengel (Author), Afshin Ghajar (Author)

Reference Books:

- 1. "Fundamentals of Heat Transfer", by F.P. Incropera & D.P. Dewitt
- 2. "Heat Transfer" by J.P. Holman

Prerequisites

Engineering Thermodynamics

ASSESSMENT SYSTEM FOR THEORY:

Quizzes	10-15%
Assignments	5-10%
Mid Terms	30-40%
ESE	40-50%

ASSESSMENT SYSTEM FOR LAB:

Quizzes	10%-15%
Assignments	5% - 10%
Lab Work and Report	70-80%
Lab ESE/Viva	20-30%

Teaching Plan

Week No	Topics	Learning Outcomes
1	Introduction & Concepts Review	 Course outline, objectives, teaching plan, and assessment method. Revision of basic Thermodynamics and Heat

		Transfer concepts
		1 Linderstending different medee of Light Transfer
2	Chapter 1	1. Understanding different modes of Heat Transfer
	Introduction to Heat	i.e. Conduction, Convection and Radiation.
	Transfor	2. Developing the sense of solving common
	Tansier	engineering problem in heat transfer.
		1. Understanding the multidimensionality and time
		dependence of heat transfer.
		2 Obtain the differential equation of heat
		conduction in various coordinate systems, and
	Charter 2	conduction in various coordinate systems, and
		simplify it for steady one-dimensional case.
3-4	Heat Conduction	3. Identify the thermal conditions on surfaces, and
	Equation	express them mathematically as boundary and
		initial conditions.
		4. Solve one-dimensional heat conduction problems
		and obtain the temperature distributions within a
		medium and the heat flux.
		1 Analyze steady heat conduction in plane walls
		2 Solving the problems using thermal resistance
		2. Solving the problems using thermal resistance
5-6	Chapter 3	3. Solve one-dimensional, steady conduction heat
	Steady Heat Conduction	transfer problems in various geometries.
		1. Heat transfer form finned surface.
		2. Boundary conditions at fin tip.
		3. Fin efficiency and fin effectiveness.
	Chapter 6	1. Laminar and Turbulent Flows
7	Fundamentals of	2. Blasius solution for flat plat
	Convection	3 Analogies between momentum & heat transfer
9		MID TERM EXAM
		1 Distinguish between Internal & External flow
		2. Evaluate drag and heat transfer accepted with
	Chapter 7	2. Evaluate drag and heat transfer associated with
8 and 10	External Forced	flow over flat plat for Laminar & Turbulent flow.
	Convection	3. Determine the Pressure drop & Heat transfer
	Convoluin	coefficient associated with flow across a tube bank
		for both In-line & Staggered configuration.
	Chapter 8	1. Mean Velocity and Mean Temperature
11-12	Internal Forced	2. The Entrance Region
	Convection	3. General Thermal Analysis
		1. Physical Mechanism of natural convection
		2 Equation of Motion and the Grashof Number
13-	Chapter 9	3 Natural Convection Over Surfaces
14-15	Natural Convection	S. Natural Convection Over Surfaces
		1. Types of Heat Exchangers
16-17	Chapter 11	2. The Overall Heat Transfer Coefficient
	Heat Exchangers	3. The LMTD Method
		4. The Effectiveness–NTU Method
		1 Introductory concepts
15, 16	Chapter 11, 12	2. Blackbody radiations and Padiative properties
	Fundamentals of Thermal	2. Distributy ratiations and radiative properties
	Radiation	5. Radiation view/snape factors
		4 Dittuco and Grov curtacoc

		5. Net radiation heat transfer to or from a surface
16, 17	Chapter 14 Mass Transfer	Analogy between heat and mass transfer Mass diffusion, Fick's law Simultaneous heat and mass transfer
18	END SEMESTER EXAMS	

Ser	Lab Equipment	List of Experiments
1		Lab Visit – Briefing on Lab Equipment and General Safety Precautions
2	Thermal Conductivity of Liquid & Gases Apparatus	Experiments 1 To calculate the thermal conductivity of the material.
3-5	Heat Conduction Study Unit (Linear & Radial)	 Experiments 2 To investigate Fourier's Law for the linear conduction of heat along a homogenous bar. Experiments 3 To investigate the effect of a change in the crosssectional area on the temperature profile along a thermal conductor. Experiments 4 To examine the temperature profile and determine the thermal conductivity of the material in case of radial conduction along a cylinder.
6	Radiation Heat Transfer Apparatus	Experiments 5 To demonstrate the use of extended surface to improve heat transfer from the surface.
7-8	Free & Forced Convection Heat Transfer	Experiments 6 To demonstrate the relationship between power input and surface temperature in free and forced convection. Experiment 7: To demonstrate the use of the extended surface to improve heat transfer from the surface
 9-14 Multi Heat Exchanger Service Unit Concentric Tube Heat Exchanger Shell & Tube Type Heat Exchanger 	Experiments 8 Calculate the Heat Transfer by the hot fluid, the heat gain by the cold fluid and heat losses.	
	ExchangerShell & Tube TypeHeat Exchanger	Experiments 9 Calculate the global heat transfer co-efficient (U) for both inner and outer surface of the tubes.
		Experiments 10 Variation of hot and cold-water flow and record the temperature
		Experiments 11 Calculate the Heat Transfer by the hot fluid, the heat gain by the cold fluid and heat losses.
		Experiments 12 Calculate the heat transfer effectiveness of the heat exchanger.

		Experiments 13 To demonstrate that intensity of radiation varies as the fourth power the source temperature.
15	Lab End Term	